FROM: Cathy Rosen, Public Works Director

INITIALED AS APPROVED FOR SUBMITTAL TO THE COUNCIL BY:
Scott Dudley, Mayor
Larry Cort, Interim City Administrator
Doug Merriman, Finance Director
Grant Weed, Interim City Attorney, as to form

PURPOSE
This agenda bill proposes adoption of a resolution related to expanding the boundaries of the Windjammer Vicinity to include adjacent (Freund) property.

On October 16, 2012, City Council directed staff to include the Freund property in field work proposed in Carollo Consultant Agreement Amendment #5 for the Wastewater Facility Plan. The attached presentation and reports are the results of that effort and are intended to assist City Council in their decision on whether the Windjammer Vicinity should be expanded to include the Freund property.

AUTHORITY
The City has authority under RCW 35A.11.020 to render governmental services including operating and supplying of utilities and municipal services commonly or conveniently rendered by cities or towns. The authority to provide sewer services is found in RCW 35.21.210 Chapter 35.67. Planning for those services as may be required under WAC 173-240 is included in this authority.

FISCAL IMPACT DESCRIPTION
Funds Required: none
Appropriation Source: n/a

SUMMARY STATEMENT
City Council approved an agreement with Carollo Engineers for the development of a facilities plan for a new wastewater treatment plant on August 4, 2010. With Carollo’s assistance, the City and its citizens engaged in a two year long process to evaluate potential sites and technologies for a new wastewater treatment plant. On August 14, 2012, the City Council selected the Windjammer Vicinity as the site for a new MBR wastewater treatment plant.

On October 16, 2012, City Council approved contract Amendment #5 with Carollo Engineers to perform additional field work in the Windjammer Vicinity including an adjacent (Freund) property. The attached reports detail the findings of the field work. The intent of the field studies performed by
City of Oak Harbor
City Council Agenda Bill

Carollo is to assist the City in determining the most suitable location for a new wastewater treatment plant (which requires between three to four acres) within the Windjammer Vicinity (which is over 50 acres).

In order to better understand cost and technical differences between the Windjammer Vicinity and the Freund property, Carollo has prepared the attached presentation comparing the following three siting options:

1. Windjammer Vicinity, Charrette (as presented at the August 14th City Council Meeting)
2. Freund Property
3. Windjammer Vicinity, Alternate (as presented at the August 14th City Council Meeting)

The three siting options were compared based on a number of factors that influence cost:

1. **Land acquisition**
 Based solely on assessed value, the Freund property is significantly lower in cost to acquire.
2. **Architecture/aesthetics and need to blend with the surrounding environment**
 Although there are clear differences between the sites, architectural costs are expected to be similar.
3. **Special structure requirements**
 Windjammer (Charrette) option requires special structural design to be constructed under what is expected to be the extension of Bayshore Drive. These costs are reduced with the other options.
4. **Special geotechnical requirements (report attached)**
 Northern and western portions of the Windjammer Vicinity are favorable from a geotechnical perspective. Deeper depth to solid soils, and higher groundwater were identified at the Freund property. These conditions will increase the cost for geotechnical design and construction.
5. **Wastewater/effluent conveyance requirements**
 Additional pipeline length increases cost of this item, and increases the risk of potential mitigation for cultural resources.
6. **Sitework requirements, including:**
 a. Clearing/demolition
 b. Stormwater management
 c. Flood protection
 d. Wetland mitigation
 Considering site-specific requirements, the Freund property has the highest cost due primarily to flood protection and wetland mitigation.

The field work indicates that all three of the proposed sites are feasible. Costs associated with each option can be found in the attached presentation. In general, technical differences between the three siting options result in offsetting costs. In addition, the Freund property presents additional risks associated with environmental permitting and flood protection. Staff recommends special consideration of these factors when selecting the final location for the facility.
STANDING COMMITTEE REPORT
This item was discussed at the November 1, 2012 Public Works Standing Committee meeting and at the November 13, 2012 Government Services Standing Committee meeting.

RECOMMENDED ACTION
A motion to either adopt Resolution 12-33 to proceed with the Facility Plan as directed by Resolution 12-17 or adopt Resolution 12-34 to incorporate the adjacent property and proceed with the TBL+ analysis and public process associated with including the adjacent property.

ATTACHMENTS
Resolution 12-33
Resolution 12-34
Attachment 1 - Technical/Cost Presentation
Attachment 2 - Survey Map
Attachment 3 - Environmental Memorandum
Attachment 4 - Geotechnical Memorandum
RESOLUTION NO. 12-33

WHEREAS, The City of Oak Harbor has determined that it requires additional capacity for wastewater treatment for the projected 2017 population forecast; and

WHEREAS, The flow to the Seaplane Base Lagoon Wastewater Treatment Plant has exceeded 85% of the plant capacity for more than three months in a row, triggering a need to prepare an Engineering Facility Plan to provide for future growth; and

WHEREAS, In recognition of this determination, the City of Oak Harbor is required by Wastewater Treatment NPDES Permit No. WA_002056-7 to prepare a Wastewater Facility Plan for future wastewater treatment capacity to meet future growth; and

WHEREAS, The City of Oak Harbor and its citizens have engaged in a two year long process to evaluate potential sites and technologies for a new wastewater treatment facility; and

WHEREAS, This process has resulted in a number of actions by the City Council, including the approval of various resolutions; and

WHEREAS, The approval of Resolution No. 12-17 on August 14, 2012 resulted in the selection of the vicinity around Windjammer Park east of Beeskma Drive as the location for a new MBR wastewater treatment plant; and

WHEREAS, this area is commonly referred to as "Windjammer Vicinity" in the context of the location for a new wastewater treatment plant; and

WHEREAS, subsequent to the approval of Resolution No. 12-17, City staff was approached by the owner of vacant property which is adjacent to area that was identified in Resolution No. 12-17 who suggested that the City consider this vacant property as a location for a new wastewater treatment plant; and

WHEREAS, on October 16, 2012, City Council approved Contract Amendment No. 5 with Carollo Engineers which directed Carollo Engineers to evaluate site-specific technical and cost differences associated with potentially locating a wastewater treatment plant on the proposed adjacent property compared to locating a wastewater treatment plant in the "Windjammer Vicinity" as defined by Resolution No. 12-17; and

WHEREAS, The comparative analysis outlined differences associated with wastewater and treated effluent conveyance, geotechnical and groundwater issues, environmental issues and other relevant technical considerations; and
WHEREAS, The analysis determined that it is feasible to construct a wastewater treatment plant on the proposed new site; and

WHEREAS, The construction costs to build a wastewater treatment plant on the proposed new site are similar to the construction costs to build a wastewater treatment plant on the Windjammer Vicinity site identified in Resolution 12-17 and the City will not realize a significant financial benefit by building a wastewater treatment plant on the proposed new site; and

WHEREAS, the proposed adjacent property has not received the same review and consideration by the public as the Windjammer Vicinity site has; and

WHEREAS, A public review process is necessary prior to including the proposed adjacent property in the Wastewater Facility Plan; and

WHEREAS, Modifying the boundaries of the Windjammer Vicinity to include this adjacent property and completing the associated public process will require an amendment to the contract with Carollo Engineers.

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF OAK HARBOR, WASHINGTON, RESOLVES AS FOLLOWS:

That the benefits of modifying the Windjammer Vicinity to include the adjacent property for a wastewater treatment plant do not outweigh the additional costs associated with the public review process; and

That City staff and Carollo Engineers are directed to prepare a Wastewater Facility Plan to site a new wastewater treatment plant in the “Windjammer Vicinity” as defined in Resolution 12-17 adopted on August 14, 2012.

PASSED and approved by the City Council this _____ day of _________________, 2012.

THE CITY OF OAK HARBOR

Mayor

Attest:

City Clerk

Approved as to Form:

City Attorney
RESOLUTION NO. 12-34

A RESOLUTION OF THE CITY COUNCIL OF THE CITY OF OAK HARBOR, WASHINGTON, DIRECTING THE EXPANSION OF THE AREA IDENTIFIED AS "WINDJAMMER VICINITY" AS DEFINED BY CITY OF OAK HARBOR RESOLUTION 12-17 FOR THE LOCATION OF A NEW WASTEWATER TREATMENT PLANT.

WHEREAS, The City of Oak Harbor has determined that it requires additional capacity for wastewater treatment for the projected 2017 population forecast; and

WHEREAS, The flow to the Seaplane Base Lagoon Wastewater Treatment Plant has exceeded 85% of the plant capacity for more than three months in a row, triggering a need to prepare an Engineering Facility Plan to provide for future growth; and

WHEREAS, In recognition of this determination, the City of Oak Harbor is required by Wastewater Treatment NPDES Permit No. WA_002056-7 to prepare a Wastewater Facility Plan for future wastewater treatment capacity to meet future growth; and

WHEREAS, The City of Oak Harbor and its citizens have engaged in a two year long process to evaluate potential sites and technologies for a new wastewater treatment facility; and

WHEREAS, This process has resulted in a number of actions by the City Council, including the approval of various resolutions; and

WHEREAS, The approval of Resolution No. 12-17 on August 14, 2012 resulted in the selection of the vicinity around Windjammer Park east of Beekma Drive as the location for a new MBR wastewater treatment plant; and

WHEREAS, this area is commonly referred to as "Windjammer Vicinity" in the context of the location for a new wastewater treatment plant; and

WHEREAS, subsequent to the approval of Resolution No. 12-17, City staff was approached by the owner of vacant property which is adjacent to area that was identified in Resolution No. 12-17 who suggested that the City consider this vacant property as a location for a new wastewater treatment plant; and

WHEREAS, on October 16, 2012, City Council approved Contract Amendment No. 5 with Carollo Engineers which directed Carollo Engineers to evaluate site-specific technical and cost differences associated with potentially locating a wastewater treatment plant on the proposed adjacent property compared to locating a wastewater treatment plant in the "Windjammer Vicinity" as defined by Resolution No. 12-17; and

WHEREAS, The comparative analysis outlined differences associated with wastewater and treated effluent conveyance; geotechnical and groundwater issues, environmental issues and other relevant technical considerations; and
WHEREAS, The analysis determined that it is feasible to construct a wastewater treatment plant on the proposed new site; and

WHEREAS, The construction costs to build a wastewater treatment plant on the proposed new site are similar to the construction costs to build a wastewater treatment plant on the Windjammer Vicinity site identified in Resolution 12-17; and

WHEREAS, the proposed adjacent property has not received the same review and consideration by the public as the Windjammer Vicinity site has; and

WHEREAS, A public review process is necessary prior to including the proposed adjacent property in the Wastewater Facility Plan; and

WHEREAS, City Council has determined that the proposed new site offers some unique opportunities and there is benefit in performing a TBL+ analysis and engaging the public regarding the proposed new site; and

WHEREAS, Modifying the boundaries of the Windjammer Vicinity to include this adjacent property and completing the associated public process will require an amendment to the contract with Carollo Engineers.

NOW, THEREFORE, THE CITY COUNCIL OF THE CITY OF OAK HARBOR, WASHINGTON, RESOLVES AS FOLLOWS:

That there are unique opportunities and benefits to modifying the "Windjammer Vicinity" to include the adjacent property for a wastewater treatment plant that warrant further review and consideration by the public; and

That City staff and Carollo Engineers are directed to bring forward an amendment to Carollo Engineers' contract to prepare a TBL+ analysis of the proposed new site and to engage the public in a review of the site.

PASSED and approved by the City Council this ___ day of ______________, 2012.

THE CITY OF OAK HARBOR

Mayor

Attest:

City Clerk

Approved as to Form:

City Attorney
Tonight's Agenda/Objectives

1. Review scope and purpose of Amendment 5
2. Present results of field work completed through Amendment 5
 - Topographical Survey
 - Environmental Assessment
 - Geotechnical Borings
3. Summarize estimated cost impacts
4. Gain direction from Council on next steps:
 - Resolution 12-33: Complete Facilities Plan for Windjammer Vicinity as defined by Resolution 12-17
 - Resolution 12-34: Expand Windjammer Vicinity to include adjacent property and complete Facilities Plan
Resolution 12-17 (August 14, 2012)

- Proceed with Facilities Plan based on Windjammer Vicinity
- Minimize space impacts on Windjammer Park to the extent possible
- Continue public process:
 - Define the best location within the Windjammer Vicinity
 - Define layout and other desirable features based on the final location
Amendment 5 Scope and Purpose

- Technical detail to help select the best location (3 to 4 acres) for the new WWTP
- Field work including:
 - Phase 1 topographical survey to establish elevations and flood protection requirements
 - Environmental assessment to better define permitting and wetland mitigation requirements
 - Geotechnical borings to characterize soils, better estimated design requirements and cost
October 16, 2012 City Council Direction

- Include adjacent property (Freund property) in scope of Amendment 5

Does Freund property provide technical/cost advantages relative to Windjammer Vicinity?
Amendment 5 Current Status

- Phase 1 survey work complete (Attachment 1)
- Environmental assessment completed based on October 30, 2012 site visit (Attachment 2)
- Geotechnical borings completed on October 30 and 31 (Attachment 3)
- Additional engineering analysis completed to compare three sites
- Windjammer Vicinity (Charrette)
- Freund
- Windjammer Vicinity (Alternate)
Field Work Summary
Phase 1 Topographical Survey
100-Year Floodplain (EL 12.5 NAVD 88)

100-Year Floodplain 12.5 feet
Regulations for Floodplain Development

- Orange Book (Criteria for Sewage Works Design, ’08)
 - G2-1.5.2 Flood Protection: Locate unit processes above the 100-year flood/wave action or adequately protect from 100-year flood/wave action
- Oak Harbor Municipal Code 17.20
 - 17.20.190(2) Nonresidential Construction: Locate construction above the base flood elevation or floodproof structure to 1 ft above base flood elevation
 - 17.20.190(3) Critical Facilities:
 - Construction permissible if no feasible alternative
 - Lowest floor > 3 feet above base flood elevation
Summary of Flood Protection Requirements

- Portions (or all) of sites being considered lie within 100-year flood plain (12.5 NAVD 88)
 - Recommend elevating grade and/or structures to 13.5
 - Additional protection for "critical facilities" (e.g. electrical)
- Southern portions of Windjammer Vicinity sites must be elevated approximately 3 feet
 - Retaining wall or sloped fill
- Existing grade at Freund property is an average of ~6.5 feet below 100-year flood elevation
 - Retaining wall/levee
 - Fill site
 - New/improved access to site is needed
- 100-year flood elevation [+12.5] more conservative than Mean Higher High Water (MHHW) + sea level rise [approx. + 11.3]
Field Work Summary
Environmental Assessment
Summary of Environmental Assessment

- Wetland ditches at both Windjammer (Charrette) and Freund sites
- Federal, state, Oak Harbor permit approvals required for wetland fill/buffer impacts
- Windjammer (Charrette) Site
 - Wetland ditch along southern boundary may be filled as result of project
 - Mitigation costs estimated between $150,000 and $275,000
 - Risk of delays and/or cost increases relatively low (limited tidal water connection)
- Freund Site
 - Wetland ditches along boundaries would be filled as result of project
 - Site adjacent to mitigation wetland; portion may be filled for access
 - Mitigation costs estimated from $400,000 to $800,000
 - Risk of delays and/or cost increases relatively high (tidal water connection; impact to previous mitigation wetland)
Field Work Summary
Geotechnical Assessment
Geotechnical Cross Sections

EXPLANATION:
BORE LOG AND
APPROXIMATE LOCATION
BLOW COUNT
SOIL TYPE AT SAMPLE
LOCATION
SOIL CONTACT
GROUNDWATER LEVEL
(DURING DRILLING)
• BLOW COUNT OVERSTATED

Notes:
1. The subsurface conditions shown are based on interpolation between widely spaced explorations and should be considered approximate. Actual subsurface conditions may vary from those shown.
2. Refer to Figure 2 for location of Cross Section.
3. This figure is for informational purposes only. It is intended to assist in the identification of subsurface conditions by a reader. Cross sections are compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The master hard copy is held by GeoEngineers, Inc., and will serve as the official document of GeoEngineers.

City of Oak Harbor
Wenatchee Slides Evaluation
Oak Harbor, Washington

GeoEngineers
Geotechnical Cross Sections

Notes:
1. The subsurface conditions shown are based on interpretation between widely spaced explorations and should be considered approximate; actual subsurface conditions may vary from those shown.
2. Refer to Figure 2 for location of Cross Section.
3. This figure is for informational purposes only. It is intended to assist in the identification of features discussed in a related document. Data were compiled from sources as listed in this figure. The data sources do not guarantee these data are accurate or complete. There may have been updates to the data since the publication of this figure. This figure is a copy of a master document. The master copy is stored by GeoEngineers, Inc. and serves as the official document of record.
Summary of Geotechnical Assessment

- Ground improvements needed at all sites
- Dewatering, shoring, and flood protection will also impact cost
- Sites to north, west and center of Windjammer Vicinity are preferred
 - Highest ground elevation
 - Shallowest to till (25 to 30 feet)
- Park site: deeper to till; additional flood control
- Freund, east sites most difficult/costly
 - Lowest ground elevation
 - Deepest to till (40+ feet)
Cost Comparison
Windjammer Charrette Concept
Conceptual Plan View (August 14, 2012)

Building Key

1. Potential Community Building (cost not included)
2. Administration Building
3. Maintenance Shop
4. Headworks
5. Aeration Basins (buried beneath road)
6. Membrane Bioreactor (MBR) Building
7. Mechanical Building
8. Electrical Building
9. Chemical Building
10. Solids Building
11. Odor Control Building

North
Windjammer Charrette Concept
Conceptual Site Section View (August 14, 2012)
Total Project Cost Components
Windjammer (Charrette) Layout

- Outfall
- WW Conveyance
- WWTP

Estimated Cost (Millions)

- $50
- $60
- $70
- $80
- $90
- $100

$57.6
$2.9
$93.5 (Total)
$83.0 (WWTP)

Windjammer (Charrette)
WWTP Project Cost Components
Windjammer (Charrette) Layout

- $83.0 (WWTP)
- $68.0 (Construction + Land)
- $65.9

Legend:
- Soft Costs (25%)
- Land Acquisition
- WWTP Construction

Y-axis: Estimated Cost (Millions)
X-axis: Windjammer (Charrette)
Approximately 17% of WWTP Costs are "Variable" Based on Site

$68.0 (Construction + Land)

$11.7 ("Variable")

$56.3 ("Fixed")

Estimated Cost (Millions)

Windjammer (Charrette)

- Land Acquisition
- Architectural Premium
- Added Structural
- Geotechnical Premium
- Wastewater/Effluent Piping
- Sitework
- Base WWTP
Sitework is the largest variable cost component with an estimated cost of $11.7 million. The breakdown includes:

- Land Acquisition: $2.1 million
- Architectural Premium: $1.6 million
- Added Structural: $0.8 million
- Geotechnical Premium: $1.7 million
- Wastewater/Effluent Piping: $0.4 million
- Sitework: $5.2 million (44% of the total cost)
Sitework Cost Elements
Windjammer (Charrette) Layout

Estimated Cost (Millions)

$7.0
$6.0
$5.0
$4.0
$3.0
$2.0
$1.0
$0.0

Windjammer (Charrette)

$5.2 Sitework

$1.2 Site Allowances

- Allowance (Wetlands Mitigation)
- Allowance (Flood Protection)
- Allowance (Stormwater Mgmt.)
- Allowance (Clear/Demo)
- Base Sitework Estimate
Property Adjacent to Windjammer Vicinity
Conceptual Site Section View

Key Plan

Conceptual Site Section
Offsetting Costs for Alternate (Freund) Property Relative to Windjammer (Charrette) Layout

Lower Cost
- Property acquisition (Assessed value)
- Demolition/clearing
- Aeration basin structure

Higher Costs
- Wastewater/effluent conveyance
- Geotechnical
- Sitework
 - Flood Protection
 - Wetland Mitigation
Sitework Cost Element Comparison
Windjammer (Charrette) & Freund Layouts

Allowances increase due to Flood Protection and Wetlands Mitigation

- Allowance (Wetlands Mitigation)
- Allowance (Flood Protection)
- Allowance (Stormwater Mgmt.)
- Allowance (Clear/Demo)
- Base Sitework Estimate
Windjammer Alternate Concept
Conceptual Plan and Perspective View (8/14/12)

View From Pioneer Way Looking Toward Park

Building Key

1. Potential Community Building (cost not included)
2. Administration Building
3. Maintenance Shop
4. Headworks
5. Aeration Basins (buried beneath buildings)
6. Membrane Bioreactor (MBR) Building
7. Mechanical Building
8. Electrical Building
9. Chemical Building
10. Solids Building
11. Odor Control Building

North
Lower Costs for Windjammer (Alternate) Layout Relative to Windjammer (Charrette) Layout

Same Cost
- Property acquisition (Assessed value)
- Demolition/clearing
- Wastewater/effluent conveyance

Lower Costs
- Aeration basin structure
- Geotechnical
- Sitework
 - Flood Control
 - Wetland Mitigation
Sitework Cost Element Comparison
Windjammer (Charrette) & Windjammer (Alternate)

Allowances decrease due to Flood Protection and Wetlands Mitigation

- Allowance (Wetlands Mitigation)
- Allowance (Flood Protection)
- Allowance (Stormwater Mgmt.)
- Allowance (Clear/Demo)
- Base Sitework Estimate
"Variable" Cost Comparison for All Sites
"Variable" Cost Comparison for All Sites
Estimated Costs Shown in Millions ($)

<table>
<thead>
<tr>
<th>Item</th>
<th>Windjammer (Charrette)</th>
<th>Freund</th>
<th>Windjammer (Charrette)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Land Acquisition</td>
<td>$2.1</td>
<td>$0.2</td>
<td>$2.1</td>
</tr>
<tr>
<td>Architectural Premium</td>
<td>$1.6</td>
<td>$1.6</td>
<td>$1.6</td>
</tr>
<tr>
<td>Added Structural</td>
<td>$0.8</td>
<td>$0.0</td>
<td>$0.0</td>
</tr>
<tr>
<td>Geotechnical Premium</td>
<td>$1.7</td>
<td>$2.6</td>
<td>$1.4</td>
</tr>
<tr>
<td>Wastewater/Effluent Piping</td>
<td>$0.4</td>
<td>$0.8</td>
<td>$0.4</td>
</tr>
<tr>
<td>Base Sitework (Fixed)</td>
<td>$4.0</td>
<td>$4.0</td>
<td>$4.0</td>
</tr>
<tr>
<td>Clearing & Demolition Allowance</td>
<td>$0.2</td>
<td>$0.0</td>
<td>$0.2</td>
</tr>
<tr>
<td>Stormwater Management Allowance</td>
<td>$0.4</td>
<td>$0.4</td>
<td>$0.4</td>
</tr>
<tr>
<td>Flood Protection Allowance</td>
<td>$0.4</td>
<td>$1.3</td>
<td>$0.1</td>
</tr>
<tr>
<td>Wetlands Mitigation Allowance</td>
<td>$0.3</td>
<td>$0.4</td>
<td>$0.0</td>
</tr>
<tr>
<td>Subtotal, Sitework</td>
<td>$5.2</td>
<td>$6.1</td>
<td>$4.6</td>
</tr>
<tr>
<td>Total Site Specific Items</td>
<td>$11.7</td>
<td>$11.3</td>
<td>$10.1</td>
</tr>
</tbody>
</table>
Total Cost Comparison for All Sites

- Windjammer (Charrette): $93.5
- Freund: $93.1
- Windjammer (Alternate): $92.0

- Soft Costs
- Outfall
- Conveyance
- Site Specific Items
- Base WWTP
Summary of Technical & Cost Differences
Summary and Conclusions

1. Based on assessed value Freund site will likely be less costly to acquire

2. Based on technical field work, Freund site will likely have higher construction cost
 - Wastewater/effluent Conveyance
 - Geotechnical
 - Flood Protection
 - Wetland Mitigation

3. Very little difference in overall cost between sites

4. Means to reduce the cost of "variable" components will be considered regardless of tonight's decision

5. Freund site presents higher risk due to environmental permitting and regulations for filling within the flood plain
Next Steps
Paths Forward Based on Tonight's Decision

Retain Windjammer Vicinity
Resolution 12-33

1. Complete draft technical chapters of Facilities Plan
2. Develop phasing/financing plan
3. Final Public Open House/Council Workshop (Early 2013)
4. Council resolution to submit draft plan (Q1, 2013)
5. Complete environmental documents for approval
6. Begin Preliminary Design
 - Final location & layout of WWTP with community input
 - Equipment procurement

Expand Windjammer Vicinity (Freund)
Resolution 12-34

1. Amendment 6: Collect community input; compare locations using TBL+
2. Select final location/layout for WWTP with public input (Q1, 2013)
3. Complete draft technical chapters of Facilities Plan
4. Develop phasing/financing plan
5. Final Public Open House/Council Workshop (Q2, 2013)
6. Council resolution to submit draft plan (Q2, 2013)
7. Complete environmental documents for approval
8. Begin Preliminary Design
 - Final layout of WWTP with community input
 - Equipment procurement
Questions?
INTRODUCTION

The purpose of this memorandum is to present preliminary geotechnical engineering findings and conclusions based on our exploration program that was completed October 30 and 31, 2012. Our services were performed in accordance with our task order with Carollo Engineers signed by Brian Matson on October 29, 2012. Our specific scope of services is included in the above referenced task order. The following is a summary of our scope of services completed to date:

- Reviewing geologic maps and available references in the project vicinity.
- Coordinating and completing the exploration plan discussed herein.
- Completing laboratory analysis on samples obtained during the explorations.
- Conducting preliminary geotechnical engineering analyses based on available information. This includes an assessment of liquefaction potential, foundation support considerations and estimation of relative costs.
- Preparing soil boring logs and cross sections.
- Preparing this memorandum summarizing the results of our explorations and analyses.

SURFACE CONDITIONS

We were asked to evaluate five different sites for comparison purposes. The locations of the sites and our explorations completed are shown in the attached Site Plan (Figure 1). Boring logs for each site are included as an attachment to this memorandum. For purposes of discussion in this document, these sites are described below:

- East Site (Boring 1) – located in a paved parking lot behind a bank administration building.
- Central Site (Borings 3 and 4) – located in a paved parking lot behind an automotive repair building.
- Park Site (Boring 14) – located in the City Beach Park, surface consists of manicured lawn.
- West Site (Borings 7 and 8) - located behind the Chrysler dealership in paved and gravel surfaced parking areas.
- Freund Site (Borings 9 and 10) - located in a plowed field west of South Beeksma Drive.
Based on our research and knowledge of the area, all five of these sites are located south of the original Oak Harbor shoreline. Historical photographs reviewed suggest the original bluff is close to the Pioneer Way alignment. GeoEngineers provided geotechnical engineering services for the recent Pioneer Way improvements and drilled an exploration in Pioneer Way right-of-way (ROW) slightly east of the intersection with SE City Beach Street. We observed approximately 5 feet of fill soils overlying native soil consisting of glacial till at that location. The historical aerial photographs suggest a historical saltwater slough (Freund Slough) meandered through and/or adjacent to all the sites.

GEOLOGIC CONDITIONS

We reviewed U.S. Geologic (USGS) map for the project area, “Geologic Map of the Oak Harbor, Crescent Harbor, and Part of the Smith Island 7.5-Minute Quadrangle, Island County, Washington” by Dragovich et al. (2005). The geologic soil deposits are the result of both glacial and non-glacial processes that have occurred during the last 15,000 years. The most recent glacial event includes the Everson Insterstad and Vashon Stade of the Fraser Glaciation. Sea level fluctuated significantly relative to the land surface and present day sea level, in response to the glacial advance and retreat (melting). The various geologic units mapped and encountered at the sites are described below.

Artificial Fill: Artificial fill is mapped in the area of most of the sites. The fill can consist of dredged soils from Oak Harbor and other sources brought to the site over the last many decades. The fill was generally not compacted and/or placed below water and therefore is in a loose condition. This unit generally has low strength characteristics, will settle under loading conditions, and the sandier layers have a high liquefaction potential.

Beach Deposits: Beach deposits are mapped in the area although the extent is masked by the overlying fill that has been placed. These deposits are described as sand, gravel, pebbly sand and boulder gravel. These deposits are generally loose and in a saturated condition. Therefore these soils are considered liquefiable.

Saltwater Marsh Deposits: Marsh deposits are mapped more towards the bay. These deposits are described as organic rich silt and mud, commonly with layers of peat. These deposits possess very low shear strength and high compressibility characteristics.

Glaciomarine Drift: Glaciomarine drift is mapped north of the sites in the upland area but underlies some beach deposits at some of the sites. This unit is described as clay and clast-rich diamicton and mud. Glaciomarine drift is derived from sediment melted out of floating glacial ice that was deposited on the sea floor during periods of glacial retreat, while the land surface was depressed 500 to 600 feet from previous glaciations. This material locally contains shells and wood, and large erratics (boulders) can be present sporadically or even in a cluster. Sometimes the upper portion of this deposit is stiff and moderately compressible as a result of partial ice contact loading; however, it oftentimes grades or occurs as medium stiff or soft. This material has moderate shear strength and compressibility when stiff; it has low shear strength and high compressibility when soft.

Glacial Till: Glacial till is located north of the sites in the upland areas but underlies the other soil units at all the sites. The till is described as an unsorted mixture of silt, sand and gravel that was deposited under the glaciers. The till can also contain large erratics (very large boulders) which occur sporadically. The till was deposited and overridden by the glaciers. Because this unit has been glacially consolidated by several thousand feet of ice, it is in a very dense condition with high shear strength and low compressibility characteristics.
Subsurface Conditions

We completed eight borings to depths of 30½ to 53 feet below the ground surface (bgs) on October 30 and 31, 2012. The draft boring logs are attached to this memorandum. The elevations provided on the borings were provided by the project surveyor. The borings were completed with a track-mounted drill rig subcontracted to GeoEngineers. All boring locations were coordinated with City personnel and with the project archeologist. Cuttings were left on-site to be investigated by the project archeologist and removed by City of Oak Harbor personnel. Based on our conversations with the archeologist, we understand that no evidence of shell midden was observed in the cuttings at any of the sites.

The borings were backfilled with bentonite chips in accordance with Department of Ecology requirements, and an asphalt patch placed at the top where the borings were completed in paved areas. Twelve boring locations were identified and are shown on the Site Plan; eight were completed due to drilling depth and time required to reach the bearing layer. A generalized description of the stratigraphy is provided below.

Fill Soils

- Fill was encountered in all borings at all of the sites, extending from ground surface down to 10 to 15 feet bgs.

- Some of the fill appears to be dredge spoils, a relatively clean sand with little gravel, or a silty sand with gravel:
 - The density is loose to medium dense;
 - The fill material generally has a low bearing capacity, and high liquefaction potential when below the water table.

- Silt layers were encountered near 5 feet bgs in B-3, B-4, B-7 and B-8.

Beach Deposits

- Beach deposits were encountered in all the borings and extended to the following approximate depths bgs at the respective borings:
 - 38 feet on the East site;
 - 30 feet on the Central site;
 - 34 feet on the Park site;
 - 24 to 25 feet on the West site; and
 - 34 to 39 feet on the Freund site.

- The beach deposits typically consist of sand with variable silt and gravel content, some shells:
 - A layer of fine-grained silt was encountered on the Freund site;
 - The density is loose to medium dense; and
 - The fill material generally has a low bearing capacity and high liquefaction potential.
Memorandum to Carollo Engineers
November 13, 2012
Page 4

Glaciomarine Drift

- Clayey silt/silty clay was encountered at two sites:
 - At the East site in B-1 and extended from approximately 38 to 50 feet bgs:
 - The glaciomarine drift was very soft at this site.
 - This unit has low shear strength, is very compressible under new loading and is generally not considered liquefiable.
 - At the Freund site and extended from approximately 34 to 40 feet bgs in B-9, and 40 to 52½ feet bgs in B-10:
 - The glaciomarine drift was stiff grading to medium stiff at this site.
 - This unit has low to moderate shear strength, is moderately compressible under new loading and has a low liquefaction potential.

Glacial Till

- Gray silty sand with gravel was encountered in all borings at all sites at the following approximate depths bgs:
 - 50 feet on the East site;
 - 30 feet on the Central site;
 - 34 feet on the Park site;
 - 29 to 30 feet on the West site; and
 - 40 to 51 feet on the Freund site.

- This is a glacially consolidated layer:
 - The density was very dense and it was difficult to drill; and
 - This unit has very high shear strength, high bearing capacity, is generally not considered compressible under normal loading, and is not considered liquefiable.

Groundwater Conditions

A high groundwater table was encountered in all of our borings. We have provided a summary of the groundwater depths and elevations encountered at the time of drilling in the table below.

<table>
<thead>
<tr>
<th>Boring</th>
<th>Site Location</th>
<th>Depth to Groundwater (bgs)</th>
<th>Approximate groundwater elevation</th>
</tr>
</thead>
<tbody>
<tr>
<td>B-1</td>
<td>East Site</td>
<td>5 ft</td>
<td>6.2 ft</td>
</tr>
<tr>
<td>B-3</td>
<td>Central</td>
<td>6.5 ft</td>
<td>5.9 ft</td>
</tr>
<tr>
<td>B-4</td>
<td>Central</td>
<td>4.5 ft</td>
<td>6.6 ft</td>
</tr>
<tr>
<td>B-7</td>
<td>West Site</td>
<td>4.5 ft</td>
<td>6.3 ft</td>
</tr>
<tr>
<td>B-8</td>
<td>West Site</td>
<td>4.5 ft</td>
<td>6.4 ft</td>
</tr>
<tr>
<td>B-9</td>
<td>Freund Site</td>
<td>3 ft</td>
<td>6.2 ft</td>
</tr>
<tr>
<td>B-10</td>
<td>Freund Site</td>
<td>2.3 ft</td>
<td>6.6 ft</td>
</tr>
<tr>
<td>B-12</td>
<td>Park Site</td>
<td>3.5 ft</td>
<td>5.1 ft</td>
</tr>
</tbody>
</table>
We did not install any monitoring wells nor were the explorations left open long enough for the groundwater level to stabilize. We expect groundwater conditions to vary based on a variety of factors such as precipitation, tides, seasons and other factors.

GEOTECHNICAL CONSIDERATIONS

All of the sites are located in a lowland area that has historically been filled over an intertidal area with a high groundwater table. We observed a significant depth of fill soils that are liquefiable when below groundwater, and sandy beach deposits that are liquefiable. Two of the sites (East and Freund) are underlain by a moderate to highly compressible layer of clay. While not unusual to find these types of soils within shoreline environments where wastewater treatment facilities are located, it is important to consider the impacts for such critical facilities. The following is a summary of various geotechnical considerations for each of the sites.

Liquefaction

All of the sites are underlain by soil stratigraphy that is subject to liquefaction during a design earthquake. Liquefaction occurs in loose saturated (below the water table) sandy soils such as the fill and beach deposits encountered at all the sites as previously described. Earthquake shaking results in a loss of shear strength and settlement. The magnitude of the settlement is determined largely by the thickness and density of the soil profile. The following table identifies the estimated range of vertical settlement based on the design earthquake that has a 2 percent probability of exceedance in 50 years (Return period of 2575 years), which is a typical design consideration.

<table>
<thead>
<tr>
<th>Site Location</th>
<th>Estimated Liquefaction Induced vertical settlement</th>
</tr>
</thead>
<tbody>
<tr>
<td>East Site</td>
<td>11 to 15 inches</td>
</tr>
<tr>
<td>Central Site</td>
<td>8 to 10 inches</td>
</tr>
<tr>
<td>Park Site</td>
<td>8 to 10 inches</td>
</tr>
<tr>
<td>West Site</td>
<td>4 to 6 inches</td>
</tr>
<tr>
<td>Freund Site</td>
<td>11 to 15 inches</td>
</tr>
</tbody>
</table>

Liquefaction Mitigation Strategies

The effects of liquefaction can be mitigated by various methods and/or combinations of methods such as:

Ground Improvement by Stone Columns. This ground improvement method increases the density of the soil profile by installing a pattern of dense vertical columns of stone with a crane-mounted probe. The probe is jetted down through the liquefiable soil profile to the bearing layer (in this case either the glaciomarine drift or the glacial till); then rock is dispersed from the bottom of the probe and densified by vibration. The vibration from the installation method also densifies surrounding granular soil deposits, and is ideally suited for the granular fill and beach deposits encountered at these sites. The pattern of stone columns creates a composite material of lower overall compressibility and higher shear strength than the native soil alone. This method can be used under structures and other facilities to a) mitigate settlement from liquefaction and b) increase the bearing capacity of the soils so that conventional shallow foundation construction and/or mat foundations can be utilized. It is our experience that this mitigation measure a) is more cost effective than traditional pile foundations and b) results in better overall site performance during seismic events.
Areas and structures with ground improvement will not settle significantly during an earthquake. However, all other infrastructure supported in non-improved areas would settle (see liquefaction settlement estimates above). This puts significant stress on transitions for piping and utility connections.

- It may be appropriate to consider ground improvement in “utility corridors” to provide mitigation for these critical structures, or incorporate flexible connections or other mitigation measures.

Since no soil is removed, the rock columns result in added weight to the soil profile. Most of the lightly loaded structures (e.g., administrative and maintenance storage buildings) will not add significant weight to the soil profile; however, the larger structures such as the aeration basin may also apply additional loading that must be considered when a site is underlain by compressible soils.

- Glacial till underlies the liquefiable soils at the Central, Park and West sites. The glacial till will serve as the bearing layer and is not considered compressible under these new loads.

- The East site has 12 feet of highly compressible glaciomarine drift and the Freund site has 6 to 12 feet of moderately compressible glaciomarine drift. We don’t have sufficient design and soil consolidation information at this time to estimate post construction (after stone column and buildings) construction. We estimate that the range of settlement at the East site might be in the range of 3 to 6 inches and the range of settlement at the Freund site might be 2 to 4 inches. The settlement would occur over many years (estimated to be 10 to 20 years) and would occur as a general ground warping rather than sharp differential settlement. Therefore, this consideration is appropriate for flood levels, but not necessarily design of the structures.

Pile Foundations. Structures could be supported on piles bearing on the underlying glacial till. Driven steel piles or auger cast piles can be used in this environment, although the pile foundation has some disadvantages.

- The main consideration for this alternative is that the ground surface below and around the piles will settle from liquefaction because ground improvement is generally not performed when piles are used as the mitigation strategy.

- Pile supported structures will not settle during an earthquake. However, all other non-pile supported infrastructure would settle (see liquefaction settlement estimates above). This puts significant stress on transitions for piping and utility connections. The post-earthquake result would be voids underneath the pile supported structures.

- At both the East site and the Freund site, pile capacity reductions would occur because down drag forces will be applied to the piles as the soil profile settles.

- For the reasons identified above, pile foundations were not considered a preferred mitigation option.
Mat foundations. A mat foundation may be suitable for lightly loaded structures (see discussion below). Ground improvement may not be necessary if the settlement can be tolerated.

Shallow Foundation Considerations

It is our opinion that conventional shallow foundation construction absent ground improvement or pile support is not appropriate at any of these sites. Typical convention is to assume differential settlement one-half or equal to the total predicted liquefaction settlement. Structures cannot accommodate the magnitude of settlement predicted. Options are discussed below.

- Mat or raft foundations could be used on some structures. This is a continuous reinforced concrete foundation that will allow the entire structure to perform similarly. We expect that the heavily loaded structures such as aeration basin will have continuous bases that essentially serve as mat foundations. Where ground improvement is completed in advance, the mat foundations will perform very well.

- It may be possible to use a mat foundation without ground improvement for lightly loaded structures at some of the sites, particularly the West site which has a lower magnitude of settlement predicted. Again, transitions would need to be considered such as utilities.

- Conventional shallow foundation design (spread footings and slab-on-grade) can be used after ground improvement for lightly loaded structures such as administration and equipment storage.

Construction Dewatering

All sites with excavations greater than about 5 to 10 feet below existing grades will require construction dewatering and/or shoring for installation and construction of subsurface elements. For deeper excavations such as the aeration basin, we anticipate that sheet piles will be required. Sheet piles installed to glacial till or glaciomarine drift will essentially cut off the water source after internal dewatering.

All of the groundwater elevations observed were within 2 feet of elevation from each other. Therefore, the advantage lies with sites where a dense impermeable layer was encountered at a higher elevation; such as the Central, Park and West sites. This will allow for shorter sheet pile and shoring installations as well as shorter dewatering elements.

Flood Considerations

The sites are all located near the shoreline for Oak Harbor. Some portions of the sites are located within a flood inundation zone. Some or all of sites will require flood protection berms to prevent inundation during a flood event. Liquefaction, lateral spreading of embankments, loss of bearing capacity for levees must be considered for site development as well. These considerations will need to be evaluated in detail once a site is chosen and designs considered. For purposes of site selection, the following information is provided:

- The northern sites (East, Central and West) are mostly at or above the flood elevation. It appears that the stability of the southern edge of these sites would need to be evaluated. If ground improvement is used, the structures may be secure above the flood elevation after an earthquake.

- The Park site and the Freund site are at lower elevations such that either these sites must be raised, flood berms installed, or a hybrid system used. It is likely that ground improvement will be required
for support of some of the embankment and/or the flood control levees placed for construction of these sites.

SUMMARY AND CONCLUSIONS

All of the sites investigated are subject to liquefaction and dewatering related issues. Impacts associated with raising site grades for flood control, depth to non-liquefiable soils, and presence of soft soils that will settle will also influence cost. For comparative analysis, our preliminary conclusion is that the preferred option to mitigate liquefaction and settlement will be installation of stone columns.

For purposes of discussion at this level of assessment, it was considered necessary to install ground improvement the full depth of the liquefiable soils, which varies by site from approximately 30 to 40 feet. Based on our experience, stone column spacing on the order of 7- to 10-feet is typical within a structure footprint, providing about 25 percent to 15 percent (respective) replacement ratio for 42-inch diameter stone columns. A closer spacing is used under perimeter spread footings and isolated columns to typical buildings. Typically, the area in which stone columns are installed extend at least 10- to 20-feet (one to two rows) laterally beyond the edges of structures. Tighter spacings will be used for heavily loaded structures with raft foundations such as the aeration basin on this project.

As a basis for comparative site analysis we obtained stone column installation cost data from Hayward Baker, a ground improvement specialty contractor in Seattle, Washington. For an average ground improvement depth of 30 feet, the estimated cost of the ground improvement is on the order of $18/square foot (SF) to $30/SF of structure footprint. The lower unit cost is appropriate for lightly loaded structures with a maximum design floor load of 250 pounds per square foot (psf) (e.g. non-process buildings or non-water bearing structures); the higher cost would be for a more heavily loaded two-story structure with a design floor load of 500 psf and/or for water bearing structures. Ground improvement costs also vary as a function of depth. For the purpose of this analysis, it can be assumed that unit costs for installing stone columns between 10 and 40 feet deep will vary in a linear fashion relative to the depth of the installation.

Based on site conditions and development considerations as discussed above, we are able to make the following conclusions related to geotechnical conditions and associated cost of site development:

1. **West and Central Sites.** These sites are similar from a geotechnical standpoint. The West site has the shallowest depth to glacial till at 29 to 30 feet and no soft compressible soils. The Central site has glacial till at 30 feet and no soft compressible soils. Relative to other sites, ground improvements to mitigate liquefaction and settlement will be the least costly. Both sites will require some additional fill, but not much considering present grades.

2. **Park Site.** This site has glacial till at 34 feet and no soft compressible soils based on the one boring. Ground improvements will be more costly on this site, due to increased depth to non-liquefiable soils. The site will also require more fill than the sites to the north because it is at a lower elevation.

3. **East and Freund Sites.** The East site has very soft glaciomarine drift at 38 feet and glacial till at 50 feet in the one boring. The glaciomarine drift is highly compressible, which likely may require some additional mitigation. The Freund site has glaciomarine drift at 34 and 40 feet and glacial till at 40 and 52½ feet in the two borings. The glaciomarine drift is moderately compressible, which may
nct require additional mitigation. Relative to other sites, ground improvements to mitigate liquefaction and settlement will be the most costly. Both sites will also require additional fill to mitigate flood risk. The Freud site is the lowest and will require significantly more fill, berms or other flood protection measures. It is likely that at least some limited ground improvement of the flood control measures will be necessary to stabilize this site.

Attachments:

Figure 1. Site Plan
Figure 2. Key to Boring Logs
Figures 3 through 10. Logs of Borings (DRAFT)
Figures 11 and 12. Cross Sections (DRAFT)
Legend

- Boring location
- Cross Section

Projection: WGS 1984 Web Mercator Auxiliary Sphere

Notes:
1. The locations of all features shown are approximate.
2. This drawing is for information purposes. It is intended to assist in showing features discussed in an attached document. GeoEngineers, Inc. cannot guarantee the accuracy and content of electronic files. The master file is stored by GeoEngineers, Inc. and will serve as the official record of this communication.

Site Plan

City of Oak Harbor
Windjammer Site Evaluation
Oak Harbor, Washington

Figure 1
Soil Classification Chart

<table>
<thead>
<tr>
<th>Major Divisions</th>
<th>Symbols</th>
<th>Typical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Coarse Grained Soils</td>
<td>GW</td>
<td>Well-graded gravels, gravel - sand mixtures</td>
</tr>
<tr>
<td></td>
<td>GP</td>
<td>Poorly graded gravels, gravel - sand mixtures</td>
</tr>
<tr>
<td></td>
<td>GM</td>
<td>Silty gravels, gravel - sand - silt mixtures</td>
</tr>
<tr>
<td></td>
<td>GC</td>
<td>Clayey gravels, gravel - sand - clay mixtures</td>
</tr>
<tr>
<td>More than 50% retained on No. 200 sieve</td>
<td>SW</td>
<td>Well-graded sands, gravelly sands</td>
</tr>
<tr>
<td></td>
<td>SP</td>
<td>Poorly graded sands, gravelly sand</td>
</tr>
<tr>
<td></td>
<td>SM</td>
<td>Silty sands, sand - silt mixtures</td>
</tr>
<tr>
<td></td>
<td>SC</td>
<td>Clayey sands, sand - clay mixtures</td>
</tr>
<tr>
<td>Fine Grained Soils</td>
<td>ML</td>
<td>Inorganic silts, rock flour, clayey silts with slight plasticity</td>
</tr>
<tr>
<td></td>
<td>CL</td>
<td>Inorganic clays of low to medium plasticity, gravelly clays, sandy clays, silty clays, lean clays</td>
</tr>
<tr>
<td></td>
<td>OL</td>
<td>Organic silts and organic silty clays of low plasticity</td>
</tr>
<tr>
<td></td>
<td>MH</td>
<td>Inorganic silts, micaceous or diatomaceous silty soils</td>
</tr>
<tr>
<td></td>
<td>CH</td>
<td>Inorganic clays of high plasticity</td>
</tr>
<tr>
<td></td>
<td>OH</td>
<td>Organic clays and silts of medium to high plasticity</td>
</tr>
<tr>
<td>Highly Organic Soils</td>
<td>PT</td>
<td>Peat, humus, swamp soils with high organic contents</td>
</tr>
</tbody>
</table>

Additional Material Symbols

<table>
<thead>
<tr>
<th>Symbols</th>
<th>Typical Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>AC</td>
<td>Asphalt Concrete</td>
</tr>
<tr>
<td>CC</td>
<td>Cement Concrete</td>
</tr>
<tr>
<td>CR</td>
<td>Crushed Rock/Quarry Spalls</td>
</tr>
<tr>
<td>TS</td>
<td>Top soil/Forest Duff/Sod</td>
</tr>
</tbody>
</table>

Groundwater Contact
- Measured groundwater level in exploration, well, or piezometer
- Groundwater observed at time of exploration
- Penched water observed at time of exploration
- Measured free product in well or piezometer

Graphic Log Contact
- Distinct contact between soil strata or geologic units
- Approximate location of soil strata change within a geologic soil unit

Material Description Contact
- Distinct contact between soil strata or geologic units
- Approximate location of soil strata change within a geologic soil unit

Laboratory / Field Tests

- %F: Percent fines
- AL: Atterberg limits
- CA: Chemical analysis
- CP: Laboratory compaction test
- CS: Consolidation test
- DS: Direct shear
- HA: Hydrometer analysis
- MC: Moisture content
- MD: Moisture content and dry density
- OC: Organic content
- PM: Permeability or hydraulic conductivity
- PP: Pocket penetrometer
- PPM: Parts per million
- SA: Sieve analysis
- TX: Triaxial compression
- UC: Unconfined compression
- VS: Vane shear

Sheen Classification
- NS: No Visible Sheen
- SS: Slight Sheen
- MS: Moderate Sheen
- HS: Heavy Sheen
- NT: Not Tested

NOTE: Multiple symbols are used to indicate borderline or dual soil classifications.

Sampler Symbol Descriptions

- 2.4-inch I.D. split barrel
- Standard Penetration Test (SPT)
- Shelby tube
- Piston
- Direct-Push
- Bulk or grab

- Blow count is recorded for driven samplers as the number of blows required to advance sampler 12 inches (or distance noted). See exploration log for hammer weight and drop.

- A "P" indicates sampler pushed using the weight of the drill rig.

NOTE: The reader must refer to the discussion in the report text and the logs of explorations for a proper understanding of subsurface conditions. Descriptions on the logs apply only at the specific exploration locations and at the time the explorations were made; they are not warranted to be representative of subsurface conditions at other locations or times.

KEY TO EXPLORATION LOGS

FIGURE 2
Log of Boring B-1

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01

Field Data

<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Depth (feet)</th>
<th>Interval</th>
<th>Recovered (in)</th>
<th>Brownfoot</th>
<th>Sampled_Name</th>
<th>Testing</th>
<th>Water Level</th>
<th>Graphic Log</th>
<th>Group Classification</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC</td>
<td>1½ inches of asphalt concrete</td>
</tr>
<tr>
<td>1</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td>Brown fine to coarse sand with silt and gravel (medium dense, moist) (fill)</td>
</tr>
<tr>
<td>5</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td>Gray fine to coarse sand with silt and gravel (medium dense, wet)</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
<td>Gray fine to coarse sand with shells (loose to medium dense, wet) (shell deposits)</td>
</tr>
<tr>
<td>16</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td>Gray fine to coarse sand with silt and gravel (medium dense, wet)</td>
</tr>
<tr>
<td>20</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SF</td>
<td>Gray fine to coarse sand with gravel, organic matter, and trace silt and shells (medium dense, wet)</td>
</tr>
</tbody>
</table>

Remarks

- Note: See Figure 2 for explanation of symbols.
Log of Boring B-3

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01
<table>
<thead>
<tr>
<th>Elevation (ft)</th>
<th>Depth (in)</th>
<th>Interval</th>
<th>Recovered (in)</th>
<th>Blown/Free</th>
<th>Collected Sample</th>
<th>Sample Size</th>
<th>Testing</th>
<th>Water Level</th>
<th>Graphic Log</th>
<th>Group</th>
<th>Classification</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>18</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>14</td>
<td></td>
<td>72</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>35</td>
<td>12</td>
<td></td>
<td>56</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

SM: Gray silty fine to coarse sand with gravel (very dense, wet) (fill)

Nota: See Figure 2 for explanation of symbols.

Log of Boring B-3 (continued)

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01
Log of Boring B-4

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01
Figure 5
Sheet 1 of 2

Field Data

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Internal Biore/foot</th>
<th>Recovered (in)</th>
<th>Collected Sample Name</th>
<th>Testing</th>
<th>Water Level</th>
<th>Graphic Log</th>
<th>Group Classification</th>
<th>Material Description</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>AC</td>
<td>1.5 inches of asphalt concrete</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SM</td>
<td>Brown silty fine to coarse sand with gravel (loose, moist) (fill)</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
<td>2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ml</td>
<td>Brown silt with rootlets (soft, wet)</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>15</td>
<td></td>
<td>2b</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP</td>
<td>Gray medium to coarse sand with trace silt (loose, wet)</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>20</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SP-SM</td>
<td>Gray fine to coarse sand with silt and occasional organic matter (loose, wet)</td>
<td>60.5% F = 6</td>
</tr>
<tr>
<td>20</td>
<td>25</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>SM</td>
<td>Gray fine to coarse sand with silt and occasional shells (loose, wet) (beach pebbles)</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray silty fine to medium sand with trace shells (loose, wet)</td>
<td>19% F = 5</td>
</tr>
</tbody>
</table>

Notes: See Figure 2 for explanation of symbols.

Drilled: 10/30/2012 **End:** 10/30/2012 **Total Depth:** 35.5 feet
Logged By: AJH **Driller:** Boretec
Checked By:
Hammer Data: Rope & Cathhead, 140 (lbs) / 30 (in) Drop
Drilling Equipment: M55 Track-mounted
Drilling Method: Hollow-Stem Auger
Surface Elevation: 11.12 ft
Vertical Datum: NAD 83
Easting (X): 1197053.67
Northing (Y): 474524.73
System: Datum
Groundwater: Depth to Water, (ft) 10/30/2012, Elevation (ft) 4.5, 6.62
Notes:
Log of Boring B-7

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01

Figure 6
Sheet 1 of 2
Log of Boring B-8

Project: Oak Harbor Wastewater Treatment Plant

Project Location: Oak Harbor, Washington

Project Number: 2751-017-01

FIELD DATA

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Interval</th>
<th>Recalculated (in)</th>
<th>Biodegradation</th>
<th>Collected Sample</th>
<th>Salinity, N. content</th>
<th>Water Level</th>
<th>Graphic Log</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>8</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>12</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>15</td>
<td>6</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>20</td>
<td>8</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>25</td>
<td>9</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- **SM:** Brown silty fine to coarse sand with gravel (medium dense, moist to wet) (fill)
- **ML:** Brown-black sandy silt with occasional gravel and organic matter (soft, wet)
- **SP-SM:** Gray fine to coarse sand with silt (loose, wet)
- **SP:** Gray fine to coarse sand with gravel, trace shells, and silt (loose, wet)
- **SP-SM:** Gray medium to coarse sand with silt and trace shells (medium dense, wet)
- **SP-2M:** Gray fine to medium sand with silt and shells (medium dense, wet) (beach deposits)
- **ML:** Brown sandy silt with occasional gravel (stiff, wet) (transition zone)

REMARKS

- %F = 7
- %F = 4
- %F = 8
- %F = 13

Note: See Figure 2 for explanation of symbols.
<table>
<thead>
<tr>
<th>Field Data</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Interval</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depth (feet)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recovered (ft)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blows/foot</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Collected Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sample Name</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water Level</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Graphic Log</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Group Classification</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Material Description

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dry Density, (pcf)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moisture Content, %</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks

Log of Boring B-3 (continued)

Project: Oak Harbor Wastewater Treatment Plant

Project Number: 275-017-01

Figure 7

Sheet 2 of 2

Note: See Figure 2 for explanation of symbols.
Log of Boring B-9

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01

<table>
<thead>
<tr>
<th>Depth (ft)</th>
<th>Interval</th>
<th>Recovered (in)</th>
<th>Drilled Sample Name</th>
<th>Water Level</th>
<th>Classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>12</td>
<td>11</td>
<td></td>
<td></td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>Gray fine to medium sand (medium dense, moist to wet) (till)</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>18</td>
<td>14</td>
<td></td>
<td></td>
<td>SP-SM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td>Gray fine to medium sand with silt and shells (medium dense, wet)</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>12</td>
<td>15</td>
<td></td>
<td></td>
<td>SP-SM</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26</td>
<td></td>
<td>Gray fine to medium sand with silt, shells, and trace organic matter (medium dense, wet) (beach deposits)</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>12</td>
<td>18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: See Figure 2 for explanation of symbols.

FIELD DATA

- **Surface Elevation (ft):** 8.25 (Vertical Datum: NAD 83)
- **Easting (X):** 1196009.42
- **Northing (Y):** 473782.15
- **Drilling Method:** Hollow-Stem Auger
- **Drilling Equipment:** M55 Track-mounted
- **Groundwater Data Measured:** Depth to Water = 3.0 ft, Elevation = 5.25 ft

MATERIAL DESCRIPTION

- SP: Gray fine to medium sand (medium dense, moist to wet) (till)
- SP-SM: Gray fine to medium sand with silt and shells (medium dense, wet)
- SP-SM: Gray fine to medium sand with silt, shells, and trace organic matter (medium dense, wet) (beach deposits)

REMARKS

- %F = 3
- %F = 9

Figure 8
Sheet 1 of 2
Note: See Figure 2 for explanation of symbols.
Log of Boring B-10

Project: Oak Harbor Wastewater Treatment Plant
Project Location: Oak Harbor, Washington
Project Number: 2751-017-01
<table>
<thead>
<tr>
<th>Field</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Date</td>
<td>10/31/2012</td>
</tr>
<tr>
<td>End Date</td>
<td>10/31/2012</td>
</tr>
<tr>
<td>Total Depth</td>
<td>41 ft</td>
</tr>
<tr>
<td>Surface Elevation (ft)</td>
<td>8.61</td>
</tr>
<tr>
<td>Vertical Datum</td>
<td>NAD 83</td>
</tr>
<tr>
<td>Driller</td>
<td>Boretec</td>
</tr>
<tr>
<td>Drill Method</td>
<td>Hollow-Stem Auger</td>
</tr>
<tr>
<td>Hammer</td>
<td></td>
</tr>
<tr>
<td>Data</td>
<td>Rope & Cathead</td>
</tr>
<tr>
<td>System Datum</td>
<td></td>
</tr>
<tr>
<td>Equiment</td>
<td>M55 Track-mounted</td>
</tr>
<tr>
<td>Groundwater</td>
<td></td>
</tr>
<tr>
<td>Date Measured</td>
<td>10/31/2012</td>
</tr>
<tr>
<td>Depth to Water (ft)</td>
<td>3.5</td>
</tr>
<tr>
<td>Elevation (ft)</td>
<td>5.11</td>
</tr>
</tbody>
</table>

FIELD DATA

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Interval</th>
<th>Receiver</th>
<th>Blower</th>
<th>Sample ID</th>
<th>Sample Name</th>
<th>Water Level</th>
<th>Graphic Log</th>
<th>Group Classification</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td></td>
</tr>
</tbody>
</table>

MATERIAL DESCRIPTION

- Gray fine to coarse sand with silt (loose, moist to wet) (fill)
- Becomes wet
- With trace shells
- Gray fine to coarse sand with silt and shells (loose, wet) (beach deposits)
- With trace organic matter
- Gray silty fine sand with trace shells and organic matter (loose, wet)

REMARKS

- %F = 5
- %F = 5
- %F = 13

Note: See Figure 2 for explanation of symbols.

Log of Boring B-12

- Project: Oak Harbor Wastewater Treatment Plant
- Project Location: Oak Harbor, Washington
- Project Number: 2751-017-01

<table>
<thead>
<tr>
<th>Elevation (feet)</th>
<th>Depth (feet)</th>
<th>Interval</th>
<th>Recovered (in)</th>
<th>Broke/Took</th>
<th>Collected Sample</th>
<th>Sample Name</th>
<th>Testing</th>
<th>Water Level</th>
<th>Graphic Log</th>
<th>Group Classification</th>
<th>Material Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>8</td>
<td>19</td>
<td>24</td>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray silty fine to coarse sand (medium dense, wet) (transition zone)</td>
</tr>
<tr>
<td>30</td>
<td>11</td>
<td>18</td>
<td>36</td>
<td></td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gray silty fine to coarse sand with gravel (very dense, wet) (III)</td>
</tr>
<tr>
<td>35</td>
<td>8</td>
<td>11</td>
<td>50/5'</td>
<td></td>
<td></td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>8</td>
<td>8</td>
<td>50/5'</td>
<td></td>
<td></td>
<td>11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Remarks: How count overstated

Log of Boring B-12 (continued)

Project: Oak Harbor Wastewater Treatment Plant

Project Location: Oak Harbor, Washington

Project Number: 2751-017-01

Figure 10

Sheet 2 of 2
Cross Section B-B'

City of Oak Harbor
Windjammer Site Evaluation
Oak Harbor, Washington

GEOENGINEERS

Figure 12
memorandum

date November 12, 2012

to Anne Conklin and Brian Matson, Carollo Engineers

from Michael Muscari and Lisa Adolfson

subject Oak Harbor Wastewater Treatment Plant Site Selection – Wetland Reconnaissance of Freund Site and Windjammer Park

ESA wetland ecologist (Michael Muscari) conducted a wetland reconnaissance on the Freund Site and on the Windjammer Parks site, both identified as potential locations for the Oak Harbor Waste Water Treatment Plant. ESA was accompanied on October 30, 2012 by Brian Matson (Carollo) and Joe Stowell (City of Oak Harbor). The locations of the sites are within the City limits and are shown on Figures 1 and 2 (attached).

The reconnaissance involved walking throughout the sites (only northwest corner of park site) and making observations of three required wetland parameters: soil, hydrology, and vegetation conditions. Specific indicators must be present for all three of the wetland parameters for an area to meet the definition of a regulated wetland. A manual soil auger was used to make observations of subsurface soil and hydrologic conditions. Only selected areas were observed during the site visit, and a formal determination and delineation of wetlands was not conducted. This reconnaissance level site assessment provides approximate wetland and buffer boundaries which are appropriate for initial planning but not for site design. Results of the site review are discussed below for two areas: Freund Site (TPN R13203-033-5100) and Windjammer Park (TPN R1302-106-0750).

Freund Site
This approximately 6-acre site located west of South Beeksm Drive and north of SW Beeksma Drive. There are no structures or improvements on the site. Three ditches along the perimeter of the site were determined to meet the definition of wetland, and one small area near the northwest corner of the site was determined to potentially meet wetland conditions. The potential wetland area did not meet the wetland definition, but additional observations during late winter or early spring would be needed for a definitive determination. A large wetland, which was constructed for mitigation, is located on the parcel immediately to the north.

Most of the site is covered by pasture grasses and appears to be cultivated for hay or disked on a regular basis. Grass species observed include: orchard grass, ryegrass, bentgrass, and giant fescue). The wetland vegetation criterion was not met at any location on the site, outside of the wetland ditches. Surface water was observed in each of the three ditches, but no soil impeded within the upper 12 inches was observed at any other areas examined with a soil auger. At one location near the northwest corner of the site (identified as potential wetland on Figure 1) there was soil saturation at a depth of approximately 13 inches. At this location it is possible that soil saturation to the surface may exist in late winter and early spring. Hydric (wetland) soil conditions were observed throughout the site. Low chroma soils with redox features met the description of hydric soil indicators. Based on the landscape position and historic aerial photos showing a large tidal channel in this area, it is assumed that the hydric soil indicators observed are remnant features that have persisted from a time before the site was ditched and cultivated.
Freund Site
November 12, 2012

The three ditches along the perimeter of the property contained surface water and met criteria for all required wetland parameters (hydric soils, wetland hydrology, and wetland vegetation). The ditch along 400 feet of the west property boundary was approximately 12 feet wide, contained greater than 1 foot of water, and had a slow flow to the south on October 30, 2012. Wetland plants were dominant in the ditch and several aquatic plant species were present. The ditch along approximately 430 feet of the south end of the site was 2 to 4 feet wide and had been recently excavated. This wetland ditch flows west into the larger ditch along the west property boundary. The ditch along approximately 220 feet of the east side of the property was 2 to 3 feet wide and contained a mixture of grasses and low shrubs. This ditch flows north and crosses the footpath through a small pipe, which outfalls to the off-site mitigation wetland to the north.

Windjammer (Charotte)
Observations were also made of a ditch along the northern property boundary of Windjammer Park. The ditch runs for almost 1,000 feet along the north end of the site, appears to straddle the property boundary and may be entirely off-site in some portions. The ditch is narrow at the east and west ends (approximately 2 feet wide), and the central portion (approximately 700 feet) is up to 10 to 12 feet wide. Native wetland plants are dominant in the ditch and surface water was present. Criteria were met for all three wetland parameters. There was no flow in the ditch on October 30, 2012, but it appears that the ditch drains out culverts at both the west and east ends. Approximate wetland boundaries are shown on Figure 1, which are appropriate for initial planning but not for site design. A formal delineation of these wetland areas was not conducted.

Summary and Regulatory Discussion
Based on the conditions observed on October 30, 2012 we determined that three wetlands (wetland ditches) occur on the Freund Site. Additionally, one area near the center of the site is potentially a wetland. Additional field work would be needed to make a definitive determination for this small area. The 1,000 foot-long ditch on the north boundary of Windjammer Park also meets the definition of wetland.

All of the wetland ditches identified on these sites would likely be regulated by the Corps of Engineers as waters of the U.S. This conclusion is based on historic hydric soils around the ditches, landscape position, and historic aerial photographs that show a large tidal channel running through this area. Based on our experience with the Seattle District of the Corps these ditches would be regulated as waters of the U.S. (wetlands or streams), and would be subject to applicable Corps 404 permit and Ecology 401 permit requirements for activities resulting in fill of any wetland areas. However, the Corps has the authority for jurisdictional determinations and should be consulted for a final determination. If direct wetland fill would result from development of the site, the Corps may use Nationwide Permit 39. However, due to the proximity and connection of the Freund site wetlands to tidal wetlands it is possible that Ecology would require an Individual 401 permitting process. Either permitting route, Nationwide or Individual, would require mitigation for wetland impacts. Costs for wetland mitigation including planning, design, permitting, hydrologic studies, site selection, site acquisition, and long-term monitoring and maintenance vary widely. Cost for a wetland mitigation project of this size could fall within the range of $300,000 to $1,000,000 per acre. Oak Harbor Municipal Code (OHMC) follows the State of Washington wetland definition, and the wetland ditches discussed in this memo would meet the state wetland definition. Wetland buffers are required by section 20.24.010 of the OHMC. The width of required buffers is determined based on several habitat and hydrologic factors that would need to be assessed on-site during a wetland delineation. Estimates of the expected range of potential required buffers are shown on the attached figures; the anticipated range is from 50 to 200 feet. A full delineation of the wetland boundaries would be needed to make a definitive determination of the size and location of the wetlands and the extent of the buffers required by the OHMC. The wetland and buffers areas shown on Figures 1 and 2 are approximate and should not be interpreted as being accurate.
Freund Site
November 12, 2012

The OHMC (Section 20.24.030) allows for reduction of the buffer width by up to 25%, given specific requirements are met. Mitigation in the form of buffer enhancement is required for buffer reduction. Buffer enhancement is typically satisfied by planting and maintaining native trees and shrubs in the remaining buffer area. Buffer enhancement costs estimates vary, but typically fall within the range of $150,000/acre for simple plans to $350,000 per acre for more elaborate enhancement involving grading. This cost estimate range is assuming on-site mitigation, if off-site mitigation is needed, costs increase considerably due to site selection process and land acquisition costs.

Conclusions

Wetlands and wet areas were identified at both the Windjammer (Charrette) site and the Freund site. Federal, state, and Oak Harbor permit approvals are required for wetland fill. Additionally, Oak Harbor requires mitigation for wetland buffer impacts. Based on our preliminary environmental evaluation the following conclusions can be made:

Windjammer (Charrette)

- One ditch running along the northern property boundary was identified as a wetland (approximately ¼ acre); a portion of the wetland (4,000 square feet) may need to be filled as a result of the project.
- The ditch does not appear to be connected to other wetlands; therefore the mitigation replacement ratio is likely to be at most 3:1.
- Based on estimated fill requirements, mitigation costs are estimated to be approximately $275,000. An area for this mitigation wetland is needed, likely in the near vicinity of the impacted area.
- Due to the lower degree of connection of the ditch wetland to tidal waters, the risk of permitting delays and/or cost increases due to permitting are expected to be lower when compared to the Freund Site.

Freund

- Three ditches running along property boundaries were identified as wetlands (approximately 3,000 square feet). Additionally, one potential depressional wetland was identified in the middle of the site. These wetlands would need to be filled as a result of the project.
- The site is also adjacent to a mitigation wetland that is likely protected by a conservation easement. A portion of this wetland (approximately 4,500 square feet) may need to be filled to provide access to the site above the 100-year flood elevation.
- Mitigation requirements will vary depending on the impact area and condition of the wetlands; however, a mitigation replacement ratio of up to 6:1 is possible given the relative importance of previous mitigation wetlands.
- Based on estimated fill requirements, mitigation costs are estimated to be $400,000. An area for this mitigation wetland is needed, likely in the near vicinity of the impacted area.
- Due to the higher degree of connection of the ditch wetland to tidal waters, and due to potential impacts to the existing mitigation wetland, the risk of permitting delays and/or cost increases due to permitting are expected to be higher when compared to Windjammer Charrette site.

Limitations

Within the limitations of schedule, budget, scope-of-work, and seasonal constraints, we warrant that this study was conducted in accordance with generally accepted environmental science practices, including the technical
guidelines and criteria in effect at the time this study was performed. The results and conclusions of this memo represent the authors' best professional judgment, based upon information provided by the project proponent in addition to that obtained during the course of this study. No other warranty, expressed or implied, is made.
Figure 1
Study Site

NOTE: Wetland boundaries were not delineated. Wetland ditches, wetlands, and buffers are approximate only.